 



MODEL PAPER

B.E. DEGREE EXAMINATION.

Fourth Semester

Electronics and Communication Engineering

ma 034 — random processes

Time : Three hours
Maximum : 100 marks

(Use of Statistical Tables allowed.)

Answer ALL questions.

PART A — (10 ( 2 = 20 marks)

Let X be a random variable taking values –1, 0 and 1 such that 
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 Find the mean of 
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The moment generating function of a random variable X is given by 
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A continuous random variable X has probability density function given by 
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 Find k such that 
[image: image7.wmf].

05

.

0

)

(

=

>

k

X

P


The joint probability density function of two random variables X and Y is given by 
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 and otherwise. Find 
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Define Poisson random process. Is it a stationary process. Justify the answer.

Define (a) Wide sense stationary random process (b) ergodic random process.

A stationary random process 
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 with mean 3 has auto–correlation function 
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 Find the standard deviation of the process.

Define cross–covariance function of two random processes and state two of its properties.

The auto–correlation function of a wide sense stationary random process is given by 
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 Determine the power spectral density of the process.

The power spectral density function of a wide–sense stationary process is given by 
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. Find the auto–correlation function of the process.

PART B — (5 ( 16 = 80 marks)

1. (i)
If X and Y are independent Poisson random variables, show that the conditional distribution of X given 
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 is a binomial distribution.

(ii)
A random variable X is exponentially distributed with parameter 1. Use Tchebycheff's inequality to show that 
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 Also find the actual probability.




2. (a)
(i)
If the joint p.d.f. of two random variables X and Y is given by
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Find the p.d.f. of XY.




(ii)
If 
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 use the central limit theorem to estimate 
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Or

(b)
(i)
If X, Y and Z are uncorrelated random variables with zero mean and standard deviation 5, 12 and 9 respectively, and if 
[image: image21.wmf]Y

X

U

+

=

 and 
[image: image22.wmf],

Z

Y

V

+

=

 find the correlation coefficient between U and V.


(ii)
If X  and Y  are independent exponential distributions with parameter 1, find the p.d.f of 
[image: image23.wmf].
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3. (a)
(i)
State the conditions under which the Poisson distribution is a limiting case of the Binomial distribution and show that under these conditions the Binomial distribution is approximated by the Poisson distribution.


(ii)
Check whether the two random processes given by 
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B

t

A

t

X

0

0

sin

cos

)

(

w

w

+

=

 and 
[image: image25.wmf]t

A

t

B

t

Y

0

0

sin

cos

)

(

w

w

-

=

 where 
A and B are uncorrelated, zero mean and equal variance random variables are wide sense stationary.

Or

(b)
(i)
Show that X is a discrete random variable taking positive integer values with memoryless property, then X is the geometric distribution.


(ii)
If the wide sense stationary process 
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 is uniformly distributed in 
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, prove that X is ergodic with respect to the auto–correlation function.

(a)
(i)
For the jointly wide sense processes X and Y prove that
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(ii)
For an input–output linear system 
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Or

(b)
(i)
Show that the inter–arrival time of a Poisson process with intensity 
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 obeys an exponential law.


(ii)
The power spectral density of a zero mean wide sense stationary process 
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 where k is a constant. Show that 
[image: image37.wmf])

(

t

X

 and 
[image: image38.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

0

W

t

X

p

 are uncorrelated.

(a)
(i)
The power spectral density of a wide sense stationary process is given by 
[image: image39.wmf](
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(ii)
The power spectrum of a wide sense stationary process 
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 Find the auto–correlation function and average power of the process.

Or

(b)
(i)
Show that for an input–output system 
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 is the system transfer function, and the input X is wide sense stationary.


(ii)
Find the power spectral density of a wide sense stationary process with auto–correlation function 
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